

DOE NP contract: DE-SC0013405

ENERGY Science Measurement Of Longitudinal Single-Spin Asymmtry, AL For W Boson Production In Polarized P+P Collisions At $\sqrt{S} = 510$ GeV At RHIC

Temple University, College of Science and Technology, Philadelphia, PA

Devika Gunarathne [for the STAR collaboration]

RHIC/AGS User Meeting 2016, BNL, NY

College of Science and Technology TEMPLE UNIVERSITY

INTRODUCTION

SPIN STRUCTURE OF THE PROTON

spin sum rule

 $\langle S_p \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L$

Quark / antiquark Contribution

DSSV global analysis of helicity PDF

• Large uncertainty for sea quark polarization

W Boson Production in polarized p+p collisions

• Direct access to $\Delta q / \Delta \overline{q}$ Easy detection

quark sum (ū+d)

• No fragmentation involve.

 Maximum parity violation

EXPERIMENT Endcap Electro-Magnetic Calorimeter (EEMC) Beam - Beam Counter (BBC) Forward Gem Tracker (FGT) Time Projection Chamber (TPC) Barrel Electro-Magnetic Calorimeter

STAR Detector

 $: -1.3 < \eta < +1.3$

Tracking and Particle ID

BEMC: $-1.0 < \eta < +1.0$

EEMC: $+1.1 < \eta < +2.0$

Barrel and Endcap 2π calorimetry

BBC / ZDC:

Relative Luminosity

RESULTS

single spin

asymmetry

STAR Run 2012 W AL **Published Results**

 Larger ū quark polarization than theoretical prediction

STAR Run 2013 W AL **Projections**

• Large data set in run 2013 expect to reduce uncertainty further

Impact of Recent STAR W AL Results on Recent Global Analyses and Predictions for future STAR Results

CONCLUSION

- The production of W bosons in polarized P+P collisions provides an excellent way to study the spin and flavor asymmetries of the proton quark and antiquark distributions.
- STAR has measured the parity violating single spin asymmetry A_L for pseudorapidity between -1.4 and +1.4 from STAR 2012 and 2011 data providing the first detailed look at the asymmetries η dependance.
- STAR 2012 W A_L results provide significant constraints on Δū and Δd
- Large data set of STAR 2013 is being analyzed currently in mid rapidity region (pseudo-rapidity between -1.0 and +1.0) and expects results reduce uncertainty further.
- High precision results from STAR 2013 data will improve he constraints on the anti u and anti d quark polarizations.

ANALYSIS

Reconstruction of W bosons from decay electron and positrons

- Isolated high energetic TPC tracks pointing to calorimeter tower. Energy from the maximum 2x2 cluster.
- Undetected neutrino leads to large opposite missing energy, large imbalance in the transverse momentum.
- Cuts designed to take the advantage of topological difference between W and QCD type BG event

Calorimeter response from a simulated Calorimeter response from a QCD type di-jet background event simulated W event TPC track extrapolated . . Transverse plane views $E_{T}^{e} / E_{T}^{\Delta R < 0.7} > 88\%$

Background Estimation

 QCD BG using data driven procedure

Electron $|\eta_{\alpha}|$ <0.5 → STAR Data ---- $W \rightarrow e \nu MC$ Data-driven QCD **Run 12** E_T (GeV)

W candidate tracks as a function of transverse Energy

• Electroweak BG (W->tau, Z->e+/e-) using MC simulation

TPC Charge sign separation

